Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Commun Med (Lond) ; 2(1): 146, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2133664

ABSTRACT

BACKGROUND: Increasing vaccination coverage against SARS-CoV-2 enabled relaxation of lockdowns in many countries in Europe. As the vaccination rollouts progressed, the public health authorities were seeking recommendations on the continuation of physical distancing measures during ongoing vaccination rollouts. Compliance with these measures was declining while more transmissible virus variants have emerged. METHODS: We used a SARS-CoV-2 transmission model to investigate the feedback between compliance, infection incidence, and vaccination coverage. We quantified our findings in terms of cumulative number of new hospitalisations three and six months after the start of vaccination. RESULTS: Our results suggest that the combination of fast waning compliance in non-vaccinated individuals, low compliance in vaccinated individuals, low vaccine efficacy against infection and more transmissible virus variants may result in a higher cumulative number of new hospitalisations than in a situation without vaccination. These adverse effects can be alleviated by deploying behavioural interventions that should preferably target both vaccinated and non-vaccinated individuals. The choice of the most appropriate intervention depends on vaccination rate and vaccine efficacy against infection. CONCLUSIONS: Supplementary behavioural interventions aiming to boost compliance to physical distancing measures can improve the outcome of vaccination programmes, until vaccination coverage is sufficiently high. For optimal results, these interventions should be selected based on the vaccine efficacy against infection and expected vaccination rate. While we considered the dynamics of SARS-CoV-2, the qualitative effects of the interplay between infectious disease spread and behavior on the outcomes of a vaccination programme can be used as guidance in a future similar pandemic.

2.
PLoS Med ; 17(7): e1003166, 2020 07.
Article in English | MEDLINE | ID: covidwho-660873

ABSTRACT

BACKGROUND: The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every country in the world since it first emerged in China in December 2019. Many countries have implemented social distancing as a measure to "flatten the curve" of the ongoing epidemics. Evaluation of the impact of government-imposed social distancing and of other measures to control further spread of COVID-19 is urgent, especially because of the large societal and economic impact of the former. The aim of this study was to compare the individual and combined effectiveness of self-imposed prevention measures and of short-term government-imposed social distancing in mitigating, delaying, or preventing a COVID-19 epidemic. METHODS AND FINDINGS: We developed a deterministic compartmental transmission model of SARS-CoV-2 in a population stratified by disease status (susceptible, exposed, infectious with mild or severe disease, diagnosed, and recovered) and disease awareness status (aware and unaware) due to the spread of COVID-19. Self-imposed measures were assumed to be taken by disease-aware individuals and included handwashing, mask-wearing, and social distancing. Government-imposed social distancing reduced the contact rate of individuals irrespective of their disease or awareness status. The model was parameterized using current best estimates of key epidemiological parameters from COVID-19 clinical studies. The model outcomes included the peak number of diagnoses, attack rate, and time until the peak number of diagnoses. For fast awareness spread in the population, self-imposed measures can significantly reduce the attack rate and diminish and postpone the peak number of diagnoses. We estimate that a large epidemic can be prevented if the efficacy of these measures exceeds 50%. For slow awareness spread, self-imposed measures reduce the peak number of diagnoses and attack rate but do not affect the timing of the peak. Early implementation of short-term government-imposed social distancing alone is estimated to delay (by at most 7 months for a 3-month intervention) but not to reduce the peak. The delay can be even longer and the height of the peak can be additionally reduced if this intervention is combined with self-imposed measures that are continued after government-imposed social distancing has been lifted. Our analyses are limited in that they do not account for stochasticity, demographics, heterogeneities in contact patterns or mixing, spatial effects, imperfect isolation of individuals with severe disease, and reinfection with COVID-19. CONCLUSIONS: Our results suggest that information dissemination about COVID-19, which causes individual adoption of handwashing, mask-wearing, and social distancing, can be an effective strategy to mitigate and delay the epidemic. Early initiated short-term government-imposed social distancing can buy time for healthcare systems to prepare for an increasing COVID-19 burden. We stress the importance of disease awareness in controlling the ongoing epidemic and recommend that, in addition to policies on social distancing, governments and public health institutions mobilize people to adopt self-imposed measures with proven efficacy in order to successfully tackle COVID-19.


Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/prevention & control , Epidemics/prevention & control , Hand Disinfection , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Policy , Quarantine , Awareness , Betacoronavirus , COVID-19 , Community Participation , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Government , Health Education , Humans , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL